Modeling Steady-State Irrigated Production

Richard Howitt, Duncan MacEwan, Siwa Msang
Agricultural History

Early agriculture initiated by
 › Crop selection
 › Cultivation
 › Irrigation
 › Rotation

Agricultural intensification
 › Information
 › Energy
 › Chemical inputs and fertilizers

Problems
 › Resource depletion
 › Accumulation of external costs
Defining Sustainable Irrigated Production

- Land and water stocks are in steady-state
- Water pollution stocks are in steady-state
- Steady-states consistent with long run utility maximization
- Do not use a definition that allows resource depletion with constant utility
Margins of Adjustment

- Agricultural producers can adjust on three margins
 - Extensive margin
 - Intensive margin
 - Dynamic margin

- Most sustainable solutions result in reductions at the extensive and/or intensive margins

- Productivity losses result from these two adjustments

- Explore dynamic margin adjustments and rotational research as a way to partially reconcile sustainability and intensification
Empirical Example

- **Location**
 - Southern California Kern County field data available

- **Crops**
 - Alfalfa and cotton rotation

- **Water quantity**
 - Measured in this case by depth to groundwater

- **Water quality**
 - Measured by the concentration of nitrates in the groundwater
Changes in yields, 2010-2050, from DSSAT crop model, Rice and maize (rainfed), CSIRO A1B(left) and MIROC A1B (right)

From Dr. A. Jalloh. Addis Ababa, June 2013
Rotation Tradeoffs

- One fundamental tradeoff is between net-nitrogen using crops and net-nitrogen fixing crops

- Nitrogen using crops have higher net returns than nitrogen fixing crops

- Nitrogen fixing crops have a higher water use per unit revenue

- Rotation shifts that have lower applied nitrogen reduce leaching of nitrates but increase groundwater depletion
Three-stages in sequential-estimation framework

1. Estimate the rotation dynamic first-order conditions using geo-referenced field-level data
2. Incorporate the estimated rotation parameters into farm-level calibrated economic production model
3. Use the outputs from the calibrated production model to drive the equations of motion for groundwater use and changes in nitrate pollution
Crop profit with rotation and biophysical effects

\[\pi_{t,i} = p_{t,i} \left(\left(\bar{y}_i + \varepsilon_i \right) - \Gamma_{i|k} \right) - F_i \]

Euler conditions which must hold at any time \(t \),

\[\pi_{n,a|c} \geq \pi_{n,c|c} \]

\[\pi_{n,c|a} \geq \pi_{n,a|a} \]

Maximum Entropy estimation procedure
- Rotation effect can alternatively be estimated from crop growth models
Calibrated Production Model - 1

- Constant Elasticity of Substitution (CES) Production

\[Y_i = \tau_i \left[\beta_{i,\text{land}} x_{i,\text{land}}^{\rho_i} + \beta_{i,\text{labor}} x_{i,\text{labor}}^{\rho_i} + \beta_{i,\text{supply}} x_{i,\text{supply}}^{\rho_i} + \beta_{i,\text{water}} x_{i,\text{water}}^{\rho_i} \right]^{\nu/\rho_i}, \]

- Rotation yield adjustment, \(R_{t,i} \)

\[R_{t,a} = \frac{\left(\Gamma_{a,a} \left(\phi X B_{t-1,a} \right) + \Gamma_{a,c} \left((1 - \phi) X B_{t-1,a} \right) \right)}{X B_{t-1,a}}, \]

- Rotation-adjusted yield

\[Y R_{t,i} = \bar{Y}_{t,i} + R_{t,i}. \]
Representative Production Function

Alfalfa Region 15A

Production vs. Water and Labor

- Production on the y-axis
- Water on the x-axis
- Labor on the z-axis
- Production values range from 10^5 to 7×10^5
- Water and Labor values range from 0 to 4
Calibrated Production Model - II

Calibrated profit-maximization problem with rotation-adjusted yields becomes

$$\text{max } p_i Y_{R_i} - C_i(x_{i,\text{land}}) - \sum_{j \neq \text{land}} \sum_i \omega_j x_{i,j}$$

subject to

$$\sum_i x_{i,j} \leq B_j$$

$$\sum_i x_{i,\text{water}} \leq GW + SW$$
Nitrate dynamic equation

\[N_{t+1} = N_t + \sum_i n_f \cdot A N_{t,i} \cdot x_{i,\text{land}} - \sum_i N_t \cdot x_{t,i,\text{water}} \]

\[n_l \cdot (TDL_t - RC_t) \]

Change in depth to groundwater, and corresponding change in pumping costs (not shown)

\[AF_{t+1} = RC_t - \sum_i (1 - DP_i) x_{t,i,\text{water}} \]

\[CHG_{t+1} = \frac{AF_{t+1}}{BAS} \]
Crop Rotation Parameters

- Yield adjustment in tons/acre
 - Given that crop (row) follows crop (column)

<table>
<thead>
<tr>
<th></th>
<th>Alfalfa</th>
<th>Cotton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>-0.284</td>
<td>0.406</td>
</tr>
<tr>
<td>Cotton</td>
<td>0.025</td>
<td>-0.035</td>
</tr>
</tbody>
</table>
Change in Nitrates as Rotation Shifts
Change in Groundwater Depth as Rotation Shifts
Groundwater nitrates

Nitrate Concentration (mg/l)

Baseline

Tax
Groundwater Depth

Total Dynamic Lift (ft) vs Years (2013-2025)

- **Baseline**
- **Charge**

The line chart shows the comparison between the baseline and charge of total dynamic lift from 2013 to 2025.
Rotations have a significant role in achieving intensive sustainable agriculture
Rotation effects can be estimated and integrated with primal production models
Sustainable irrigated agriculture is unlikely to be achieved without significant technological innovations
New technology needs to be rotation enhancing rather than rotation reducing
Extensions of the model to developing countries may require plant growth models to estimate rotation effects